
Eur. Phys. J. B 25, 483–495 (2002)
DOI: 10.1140/epjb/e20020054 THE EUROPEAN

PHYSICAL JOURNAL B
c©

EDP Sciences
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Abstract. We show that in the metallic phase of a two dimensional electron gas the spin-orbit coupling due
to structure inversion asymmetry leads to a characteristic anisotropy in the magnetoconductance. Within
the assumption that the metallic phase can be described by a Fermi liquid, we compute the conductivity
in the presence of an in-plane magnetic field. Both the spin-orbit coupling and the Zeeman coupling with
the magnetic field give rise to two spin subbands, in terms of which most of the transport properties can
be discussed. The strongest conductivity anisotropy occurs for Zeeman energies of the order of the Fermi
energy corresponding to the depopulation of the upper spin subband. The energy scale associated with
the spin-orbit coupling controls the strength of the effect. More in particular, we find that the detailed
behavior and the sign of the anisotropy depends on the underlying scattering mechanism. Assuming small
angle scattering to be the dominant scattering mechanism our results agree with recent measurement on
Si-MOSFET’s in the vicinity of the metal-insulator transition.

PACS. 72.10.-d Theory of electronic transport; scattering mechanisms – 72.20.My Galvanomagnetic and
other magnetotransport effects – 72.25.Ba Spin polarized transport in metals

1 Introduction

In recent years the transport properties of two-
dimensional (2D) electron systems in Si-MOSFETs and
semiconductor heterostructures have been the subject of
a great deal of theoretical and experimental activity. One
reason of this is the possibility of a metal-insulator transi-
tion (MIT) as the density of the 2D system is varied [1]. A
“critical” density identified by a weakly temperature de-
pendent resistivity separates an “insulating” region from
a “metallic” one. In the latter, upon lowering the temper-
ature roughly below 1 K, the resistivity drops by almost
one order of magnitude, whereas in the former the resistiv-
ity increases quickly. The origin of the MIT is still unclear
and there is a wide debate in the literature concerning the
relevance of the possible mechanisms. For recent reviews
on the subject one may see references [2] and [3].

On the insulating side the resistance resembles Efros-
Shklovskii hopping [4], which points towards the rele-
vance of localized states and a soft gap in the density
of states; also the thermopower has been interpreted in
terms of an Anderson insulator [5]. From this point of view
Anderson localization seems to be relevant for the transi-
tion. Whereas the standard single parameter scaling the-
ory predicts no Anderson transition in two dimensions,

a e-mail: raimondi@fis.uniroma3.it

on the basis of the existing scaling theory of interacting
electrons a transition cannot be excluded [6–10]. Besides,
several properties of the metallic side, including the low
density, i.e., the large value of the electron gas parame-
ter rs, the strong increase of the electron g-factor [11,12],
the anomalous magnetoresistance [13,14], and a vanish-
ing compressibility at the critical density [15] can indeed
be seen as hints for the relevance of the electron corre-
lations; quantum corrections to the conductivity on the
other hand seem to be only small [16–18], at least in the
range of temperatures where the main drop of the resis-
tivity occurs [19].

The main and still open questions are: (1) Is there a
real quantum phase transition, or is just a temperature
dependent crossover phenomenon observed? (2) What is
the nature of the insulating state? (3) Can the metallic
phase be described as a Fermi-liquid?

In this paper we will not touch point one and two.
Concerning point three, there is accumulating evidence
that the answer is “yes”: at the lowest temperatures and
weak magnetic fields standard weak localization physics
has been observed in a number of different systems.

In order to obtain a better understanding of the mate-
rials, different aspects have to be investigated. We study
the influence of spin-orbit coupling on the magnetocon-
ductance.
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We assume that the metallic phase can be described as
a Fermi-liquid [20], and therefore we calculate transport
properties in the framework of the Drude-Boltzmann the-
ory. In Si-MOSFET’s with low electron density the major
spin-orbit term is believed to be due to the lack of inver-
sion symmetry of the confining potential. Originally, there
has been the suggestion that the spin-orbit coupling may
be responsible for the observed metallic behavior of the
resistivity [21]. Although at present such a view is not con-
firmed by the experiments, it is certainly useful to assess
the relevance of the spin-orbit coupling in these systems
as well as to understand whether it is related to the puz-
zling magnetoresistance in a parallel field. In this respect,
Chen et al. [22] pointed out that such a spin-orbit coupling
would induce an anisotropy in the magnetoresistance. The
resistivities measured parallel and perpendicular to the in-
plane magnetic field are different. Such an anisotropy has
been observed in Si-MOSFETs [23].

However, while the original theoretical proposal in ref-
erence [22] has been formulated in the localized limit, the
experimental results have been obtained near and across
the MIT. For this reason a direct comparison between the-
ory and experiment is difficult. In a recent paper [24] we
have provided a theory valid in the metallic regime. We
were able to reproduce correctly a number of the exper-
imental findings. The only drawback of our theory was
the wrong sign of the effect, and we speculated that this
could be due to the oversimplified assumption of a pure s-
wave impurity scattering. It is also worth mentioning that
anisotropic magnetoresistance has been observed in GaAs
electron systems [25], and GaAs hole systems [26,27]. In
these systems, the interpretation is complicated by the
intrinsic anisotropy associated with the crystal structure.

In this paper, we study how the form of the microscopic
scattering potential affects the anisotropy of the magne-
toconductance in the presence of the spin-orbit coupling.
In particular, we extend our previous analysis to include
the case of small angle scattering. The layout of our paper
is the following. In Section 2 we introduce the model and
make a first analysis by means of the Boltzmann equa-
tion. We adopt the relaxation-time approximation assum-
ing a relaxation rate independent from the position on the
Fermi surface. In Section 3, starting from the Kubo for-
mula we calculate the conductivity within a Green func-
tion approach. As a first step, we avoid to specify a micro-
scopic scattering mechanism and we simply introduce, by
hand, a lifetime in the one-particle Green function. In so
doing we neglect vertex corrections but take into account
level broadening and inter-band transitions. As it will be
clear in the following, while vertex corrections may give
rise to significant changes in the conductivity, the inclu-
sion of level broadening affects only weakly the results.
A more sophisticated analysis is carried out in Sections 4
and 5, where we will specify a microscopic mechanism re-
sponsible for the finite conductivity, namely elastic scat-
tering. In Section 4 we will assume s-wave scattering. The
Green functions and vertex corrections will be calculated
in the self-consistent Born approximation. In Section 5 we
will explore the consequences of a strongly angle depen-

dent scattering potential. In the limit of strong forward
scattering we will find that the sign of the anisotropy is
consistent with the experiments. Finally, Section 6 will
contain our conclusions.

2 The model and the relaxation time
approximation

We start from the model Hamiltonian

H =
p2

2m
+ ασ · p ∧ ez − 1

2
gµBσ · B (1)

where α is a parameter describing the spin-orbit coupling
due to the confinement field [28], σ is the Pauli matrices
vector, and ez is a unit vector perpendicular to the 2D
system. As pointed out recently by Winkler [29], this so-
called Rashba model applies for 2D electron systems (like
Si-MOS in Ref. [23]), but not for heavy-hole states which
are relevant e.g. in Si/SiGe quantum wells. To simplify the
notation we introduce the Zeeman energy ωs = 1

2gµBB
(note that this definition differs by a factor of 2 from the
standard one). The g-factor in nSi-MOS structures is near
two but is growing with decreasing electron density [11].
In the presence of spin-orbit coupling and magnetic field,
the original spin degenerate band splits into two bands
with energy dispersion

E±(p) = p2/2m ± Ω(p) (2)

Ω(p) =
√

(αpy − ωs)2 + (αpx)2. (3)

We have chosen the direction of the in-plane magnetic
field as the x-axis. According to the Boltzmann transport
theory within the relaxation time approximation, the con-
ductivity tensor at zero temperature is

σij = e2
∑
p,s

vi
sv

j
sτp,sδ (Es(p) − µ) , (4)

where s = ± is the band index and the velocities are
v± = ∇pE±(p). By further assuming a constant relax-
ation rate τp,s = τtr, the conductivity is proportional to
the product of the density of states, Ns(µ), times a Fermi
surface average of the Fermi velocities,

σij = e2τtr

∑
s

Ns(µ)〈vi
sv

j
s〉FSs . (5)

We note also that, after integrating by parts equation (4),
the conductivity may be expressed in terms of the effective
mass tensor,

σij = e2τtr

∑
p,s

∂2Es(p)
∂pi∂pj

Θ(µ − Es(p)). (6)

In the absence of spin-orbit scattering this relation be-
comes simply σ = 2e2τtrn/m, with n the electron density.
We assume that the density does not change with the mag-
netic field and therefore we have to adjust the chemical
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Fig. 1. ∆σ versus magnetic field (ωs = gµBB/2) at fixed
spin-orbit coupling αpF = 0.4εF as obtained within the relax-
ation time approximation with a single scattering rate τtr.

potential. As long as both bands are occupied, the chem-
ical potential is nearly constant, µ(ωs) ≈ εF. For high
fields when the upper band is depopulated it decreases as
µ(ωs) ≈ 2εF − ωs. The chemical potential in the absence
of magnetic field is here denoted by εF.

From equations (5) and (6) it is apparent that the
transport time drops when we consider the conductiv-
ity relative to its value in the absence of magnetic field
and spin orbit scattering, σ0 = e2N0v

2
Fτtr. For the same

reason, the relative anisotropy in the conductivity, ∆σ =
(σxx − σyy)/σ0, does not depend on the scattering time τtr

and may be determined from the simple knowledge of the
band structure. This observation makes clear the main
goal of our analysis, i.e. to what extent we can understand
the small anisotropy in the conductance without making
any assumption about the origin of the strong magnetic
field dependence of the conductivity itself.

The evaluation of the conductivity via equation (5)
or (6) is analytically nasty due to the presence of the
square root in the energy band dispersion (cf. Eq. (2)).
We begin then by presenting the result of the numerical
integration of equation (6) in Figure 1 which shows ∆σ
for a special value of the spin-orbit term as a function of
the magnetic field. We have also plotted the contributions
for the two bands separately, and it is seen that at weak
magnetic field there is a strong cancellation from the con-
tributions of both bands. At large field the upper band
depopulates and therefore does not contribute to the con-
ductivity or its anisotropy.

Some more insight is obtained by considering equa-
tion (6) in the weak and strong field limits where analyt-
ical progress is possible. First we note that ∆σ must be
zero in the limits of very weak and very strong magnetic
field, when the Fermi surface becomes rotational symmet-
ric. When ωs > αpF the dispersion of the two bands is
approximately given by

E±(p) = p2/2m±
(
ωs − αpy + (αpx)2/2ωs

)
, (7)

so that the effective mass in the x-direction, i.e. parallel
to the magnetic field, is modified according to

1
mx,±

=
1
m

(
1 ± mα2

ωs

)
. (8)

For ωs > εF, when only one band is occupied, the
anisotropy in the conductivity is thus proportional to
1/mx − 1/m and explicitly given by

σxx − σyy

σ0
= −1

2
(αpF)2

ωsεF
· (9)

For ωs < εF, when both bands contribute, there is a
partial cancellation:

σxx − σyy

σ0
= −1

2
(αpF)2

ωsεF

n− − n+

n
(10)

≈ −1
2

(αpF)2

ε2F
, (11)

since the electron densities in the lower and upper band
are n± ≈ n(1 ∓ ωs/εF)/2.

In order to give the results for the low field limit, we
first write (6) explicitly for the given band dispersion

σxx − σyy = e2τtrα
2
∑
p

(αpx)2 − (ωs − αpy)2

Ω3

× [Θ(µ − E−(p)) − Θ(µ − E+(p))] . (12)

When Ω � εF one may then approximate the difference
of the step functions by a delta function which leads to

σxx − σyy

σ0
=

1
2

(αpF)2

ε2F

×
∫ 2π

0

dθ

2π

[αpF cos(θ)]2 − [ωs − αpF sin(θ)]2

Ω2
· (13)

Evaluating the integral one arrives at

σxx − σyy

σ0
=

1
2

(αpF)2

ε2F

1 − (ωs/αpF)2

(ωs/αpF)2
Θ(ωs/αpF − 1).

(14)

It is interesting to note that (13) is identical to the Fermi
surface average of the anomalous part of the velocity v± =
p/m± αep,

σxx − σyy = 2e2N0τtrα
2〈(ep · ex)2 − (ep · ey)2〉FS (15)

with ep = (αp−ωsey)/Ω. At low magnetic field the vector
ep makes a full rotation, when averaging over the Fermi
surface so that the two dot products averaged over the
Fermi surface, in equation (15), cancel each other. The
anisotropy of the conductivity vanishes. At large field ep

becomes locked in y-direction. The conductivity becomes



486 The European Physical Journal B

�pF � ����F
�pF � ����F
�pF � ����F

�s��F

��
x
x
�

�
y
y
��
�
�

��	
��	
��	
��	
�

�	��

�

��	��

��	��

��	��

��	��

��	�


��	��

��	�

Fig. 2. ∆σ versus magnetic field as obtained within the re-
laxation time approximation for various strengths of the spin-
orbit coupling.

then anisotropic at a magnetic field value ωs = αpF. Fig-
ure 2 shows the numerically determined anisotropy for dif-
ferent strengths of the spin-orbit coupling. The edge be-
havior at αpF = ωs predicted by equation (14) is clearly
visible.

When εF > ωs � αpF the anisotropy is nearly con-
stant, which agrees both with our weak and strong field
expansion.

3 The conductivity within the Kubo formula
approach

In this section we go beyond the Boltzmann equation
approach in the relaxation-time approximation and
calculate the conductivity via the Kubo formula. The
starting point is the response kernel Qij which at zero
temperature is given by

Qij(q) = ie2
∑
p

∫ ∞

−∞

dε

2π
Tr

[
ji(p, q)G(p+)Jj(p, q)G(p−)

]

−e2N

m
δij . (16)

In the above we are using four vectors p = (ε,p) and
q = (ω,q) with p± = p± q/2; the trace is over the spin. In
the presence of the spin-orbit coupling the bare current
vertex differs from the standard expression and is given by

j =
p
m

− ασ ∧ ez. (17)

The evaluation of the dressed vertex will be considered
in Section 4. The conductivity tensor is obtained by
considering the limit

σij = lim
ω→0

Qij(ω, 0)
iω

· (18)

By splitting the energy integration into regions where the
Green functions have defined analytical properties, one
may separate the kernel into two parts. In the first both
the Green functions are retarded or advanced. This part
cancels exactly the diamagnetic term, i.e.,

i
∑
p

∫ ∞

−∞

dε

2π
Tr

[
ji(p)G(p)Jj(p)G(p)

]
− N

m
δij = 0. (19)

1/εF τ = 0.8
1/εF τ = 0.4

Boltzmann result
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Fig. 3. ∆σ versus magnetic field for αpF = 0.4 and various
scattering strengths. Scattering events are taken into account
in the broadening of the energy levels as discussed in the text.

The cancellation is made explicit in Appendix A by
exploiting the Ward identity due to the gauge invariance.
The second term is given by

σij =
e2

4π

∑
p

Tr
[
2ji(p)GR(p)Jj

RA(p)GA(p)

−ji(p)GR(p)Jj
RR(p)GR(p) − ji(p)GA(p)Jj

AA(p)GA(p)
]
.

(20)

The dressed vertex depends whether it is connected to a
pair of retarded and advanced Green functions or a pair
of Green functions with equal analytic properties.

In order to make contact with the analysis of the
previous section, we temporarily make no assumption
regarding a specific scattering mechanism and simply
take a (retarded) Green function of the form

(GR
±)−1(p, ε) = ε − E±(p) + µ + i/2τ, (21)

where the scattering time τ is of some unknown origin.
Let us also neglect the vertex corrections, i.e. J → j. We
are aware that neglecting vertex corrections often leads to
serious errors in the calculation of the conductivity, but
their calculation requires a specific scattering mechanism.
The conductivity is then given by

σij =
e2

π

∑
p

∑
a,b=±

〈a|ji(p)|b〉

× Im(GR
b (p))〈b|jj(p)|a〉Im(GR

a (p)). (22)

In the limit of weak scattering 1/τ → 0, ImGR be-
comes strongly peaked at the Fermi energy. As a result
intra-band contributions (a = b) dominate in this limit.
Neglecting then the inter-band terms (a 
= b) and with
the approximation

ImGR
a ImGR

a ≈ τπδ(ε − Ea + µ) (23)

one recovers the expression for the conductivity of the
Boltzmann equation approach, when we identify τtr

with τ . In the general case with a finite scattering rate,
the inter-band terms and deviations of ImGRImGR from
the delta function have to be taken into account. This is
clearly demonstrated in Figure 3.
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Taking into account a finite 1/τ the sharp edge of
the anisotropy at ωs = αpF disappears, although the
anisotropy curves do not change much even in the strong
scattering case where εFτ = 0.8.

Going beyond this crude approximation in calculat-
ing the conductivity we have to pay the price to make
an assumption on the scattering mechanism at play. We
assume elastic scattering, and we neglect quantum inter-
ference corrections to the conductivity. In the following
we will first calculate the conductivity in the case of a
pure s-wave scattering. The results will be obtained in
the framework of the self-consistent Born approximation.
Then we will allow an arbitrary p-dependence of the scat-
tering potential. In that case we will confine ourselves to
the weak disorder limit.

4 s-wave scattering

In this section we consider a specific microscopic origin for
the conductivity, namely elastic scattering. For simplicity
we assume a impurity potential with short range Gaussian
correlations

〈U(x)U(x′)〉 =
1

2πN0τ
δ(x − x′). (24)

We will calculate the conductivity in the framework of
the self-consistent Born approximation, including the cor-
responding vertex corrections.

The self-energy is then given by

Σ =
1

2πN0τ

∑
p

G(p). (25)

To deal with the above matrix equation we expand it in
Pauli matrices. The Green function can be written as G =
G0σ0 + G1σ1 + G2σ2 with

G0 =
1
2

[
G+ + G−

]
G1 = −ωs − αpy − Σ1

2Ω

[
G+ − G−

]
G2 = −αpx

2Ω

[
G+ − G−

]
, (26)

where Ω(p) =
√

(αpy − ωs + Σ1)2 + α2p2
x and

G± = (ε − p2/2m + µ ∓ Ω − Σ0)
−1. (27)

Because the self-energy shares the matrix structure of the
Green function, it has no σ3 component. Furthermore it
turns out that Σ2 = 0 always solves the self-consistency
equation, due to the symmetry px → −px. As a result
the self-energy has the form Σ0σ0 + Σ1σ1. To appreci-
ate the meaning of the two self-energy components, we
briefly consider the case with no spin-orbit coupling. This
is especially important for understanding the behavior at
large magnetic field. The real part of the self energy Σ0

shifts the energy spectrum by a constant. Since we have
to adjust the chemical potential in order to keep the par-
ticle number fixed, ReΣ0 can be safely neglected. The real
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Fig. 4. The imaginary part of the self-energy for αpF = 0.4
and 1/εFτ = 0.2, 0.4 as a function of the magnetic field. The
numbers for 1/εFτ = 0.4 have been divided by two.

part of Σ1 may be re-absorbed into a renormalization of
the Zeeman energy. We then concentrate on the imaginary
part, and find

ImΣR = −
(

1
2τ0

σ0 +
1

2τ1
σ1

)
(28)

with

1
τ0

≈ 1
τ

N+ + N−
2N0

(29)

1
τ1

≈ 1
τ

N− − N+

2N0
· (30)

The sum or difference 1/τ∓ = 1/τ0 ± 1/τ1 are nothing
but the scattering times for the two spin subbands. For
weak magnetic field (ωs < εF), the density of states in the
two subbands are identical and therefore 1/τ± = 1/τ0 =
1/τ . In the strong field limit (ωs > εF) the upper band is
depopulated, so that 1/τ1 = 1/τ0 = 1/2τ . The scattering
rate in the empty band is zero due to the vanishing density
of states. Typical numerical results are shown in Figure 4.
Although the general shape of the curves is as discussed
above, it is seen that for the disorder strengths we consider
there are already considerable modifications.

4.1 The vertex corrections

We now move to consider vertex corrections, following the
standard approach in the literature (see for example [30]).
Physically vertex corrections are important for obtaining
the correct momentum relaxation time, which generally
differs from the quasi-particle lifetime. For the choice of
a pure s-wave scattering potential, as in equation (24), in
the absence of spin-orbit coupling, the momentum relax-
ation time coincides with the quasi-particle lifetime. This
corresponds, diagrammatically, to the fact that there is no
dressing of the current vertex with momentum indepen-
dent impurity lines. In the presence of spin-orbit coupling
this is no longer the case due to the presence of extra
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terms in the current vertex of equation (17). The dressed
current vertex is obtained by solving the equation

Jx,y
RA = jx,y +

1
2πN0τ

∑
p

GRJx,y
RAGA. (31)

A similar equation exists for the other energy ranges when
one has a pair of retarded or advanced Green functions.
The strategy to solve the equation is to separate momen-
tum dependent from momentum independent parts, ex-
pand the spin-dependent quantities in the Pauli matrix
basis, and finally invert the resulting matrix equations.

We begin by separating the p-dependent and the
p-independent parts of the current operator:

jx,y = px,y/m ∓ ασ2,1 (32)
Jx,y = Jx,y

0 (p) + Γ x,y. (33)

Since we consider a p-independent impurity scattering the
Jx,y

0 (p) part is not dressed, i.e.,

Jx,y
0 (p) = px,y/m. (34)

The equation for the momentum independent part of the
current vertex reads

Γ x,y
ss′ = γx,y

ss′ +
1

2πN0τ

∑
p

∑
ab

GR
saΓ x,y

ab GA
bs′ . (35)

We included here the spin indices s, s′, a, and b =↑, ↓.
Notice that the calculation of the vertex Γ is an extension,
to the case of spin-orbit scattering and magnetic field,
of the well known diffuson (cf. [31] for a review). The
quantities γx,y are a sum of the bare vertices ∓ασ2,1 and
a term which is generated by px,y/m,

γx,y
ss′ = ∓α(σ2,1)ss′ +

1
2πN0τ

∑
p

∑
a

px,y

m
GR

saGA
as′ . (36)

In the Pauli matrix space the vertex equation becomes:

Γ i
ρ = γi

ρ +
1
2

∑
µνλ

IµνTr (σρσµσλσν)Γ i
λ (37)

with

Iµν =
1

2πN0τ

∑
p

GR
µ GA

ν . (38)

Some of the integrals Iµν are zero and so the equations
simplify. The final result is(

Γ y
0

Γ y
1

)
=

(
γy
0

γy
1

)

+
(

I00 + I11 + I22 I01 + I10

I01 + I10 I00 + I11 − I22

)(
Γ y

0
Γ y

1

)
(39)

(
Γ x

2

Γ x
3

)
=

(
γx
2

0

)

+
(

I00 − I11 + I22 i(I01 − I10)
−i(I01 − I10) I00 − I11 + I22

)(
Γ x

2

Γ x
3

)
, (40)

where the bare vertices γx,y are

γy
0 = Jy

00 + Jy
11 + Jy

22
γy
1 = α + Jy

01 + Jy
10

γx
2 = −α + Jx

02 + Jx
20 (41)

with

J i
µν =

1
2πN0τ

∑
p

GR
µ (pi/m)GA

ν . (42)

One might try to determine the dressed vertices Γ x,y
ρ

by solving the above matrix equations. Whereas this is
straightforward for Γ x

2,3, the equation for Γ y
0,1 needs special

care. The analysis of equation (39) shows that the matrix
on the right-hand side of (39) has an eigenvalue equal to
one. As a consequence the matrix(

1 − (I00 + I11 + I22) −(I01 + I10)
−(I01 + I10) 1 − (I00 + I11 − I22)

)

cannot be inverted, and (39) has no unique solution. This
property follows from charge conservation and manifests
in the charge density vertex being singular in the low
frequency, long wavelength limit (see also Appendix A).
To see explicitly this property consider the imaginary
part of the self-energy:

ΣR − ΣA =
1

2πN0τ

∑
p

(GR − GA)

=
1

2πN0τ

∑
p

GR
(
ΣR − ΣA

)
GA. (43)

By means of equation (43) we can relate the imaginary
part of the self-energy with the integrals over pairs of
retarded and advanced Green functions Iµν . Expanding
in Pauli matrices we find

(
ΣR − ΣA

)
ρ

=
1
2
Tr

(
σρσµσλσν

)
Iµν

(
ΣR − ΣA

)
λ

(44)

which gives rise to the equation

(
1/τ0

1/τ1

)
=

(
I00 + I11 + I22 I01 + I10

I01 + I10 I00 + I11 − I22

)(
1/τ0

1/τ1

)
.

(45)

This means that the vector of the scattering rates is an
eigenvector of the above matrix with eigenvalue λ0 = 1.
The second eigenvalue is then given by λ1 = 2I00+2I11−1.
We now demonstrate that the eigenvector corresponding
to λ1 is proportional to (γy

0 , γy
1 ). We start from

1
2πN0τ

Tr
∑
p

jy(GR − GA) = 0. (46)
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We use again the relation GR − GA = GR(ΣR − ΣA)GA

and arrive at

1
4πN0τ

∑
p

py

m
Tr

[
σµ

(
1
τ0

σ0 +
1
τ1

σ1

)
σν

]
GR

µ GA
ν +

α

τ1
= 0

(47)

with the final result that

1
τ0

(Jy
00 + Jy

11 + Jy
22) +

1
τ1

(α + Jy
01 + Jy

10) = 0, (48)

so that the vector (γy
0 , γy

1 ) is perpendicular to (1/τ0, 1/τ1)
and therefore necessarily is the second eigenvector of the
matrix on the right hand side of (45). The solutions
of (45) for the dressed vertex (Γ y

0 , Γ y
1 ) are then given by

(Γ y
0 , Γ y

1 ) = (γy
0 , γy

1 )/(1−λ1) plus an arbitrary vector pro-
portional to (1/τ0, 1/τ1). From (46) and (47) one observes
that this arbitrary vector is irrelevant for the conductivity.
For simplicity we choose it to be zero.

Numerical results for the dressed vertices are shown
in the figure. Notice that equations (45) and (48) provide
a nontrivial consistency check for the numerics. It is seen
that the anomalous part of the current operator is strongly
affected by the vertex corrections. In particular for weak
magnetic field the quantities Γµ become extremely small,
so that the anomalous part of the current operator is can-
celed, J i ≈ pi/m. In the limits εFτ � 1 and ωs = 0 this
cancellation is exact as we now show. When ωs = 0 the
Green functions are

G
R(A)
0 =

1
2

[
G

R(A)
+ + G

R(A)
−

]
G

R(A)
1 =

sin(θ)
2

[
G

R(A)
+ − G

R(A)
−

]
G

R(A)
2 = −cos(θ)

2

[
G

R(A)
+ − G

R(A)
−

]
, (49)

where

G
R(A)
± = (ε − p2/2m ∓ αp ± i/2τ)−1. (50)

The first step is to evaluate the effective bare vertices en-
tering the expression for the conductivity, i.e., γi. This can
be done by evaluating the integrals we denoted by J i

µν . Be-
cause the Green function in the case ωs = 0 has a simple
angular dependence, one may directly conclude that the
integrals J00, J11, and J22 are zero. With the approxima-
tion GR

±GA
± ≈ 2πτδ(ε − E±) the remaining integrals are

readily found to be J01 + J10 = −α and J02 + J20 = α
with the result that the vertices γi and consequently the
dressed vertices Γµ are zero.

In the strong field limit ωs → ∞ we find Jx = px/m−
ασ2, Jy = py/m + α(σ1 − σ0)/2, compare Figure 5. Thus
for Jx the vertex corrections are absent but they seem to
be present for Jy. On the other hand as we noted before
the solution of the vertex equation is not unique and also
Jy = py/m + ασ1 solves (31), i.e. there are no vertex
corrections to the conductivity. We will discuss the strong
field limit in more detail in the next section.
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Fig. 5. The dressed vertices Γ0 . . . Γ3 in units of α as a
function of the magnetic field. Here we chose αpF = 0.4εF
and 1/(εFτ ) = 0.2. Remember that the bare vertices are
γy
0 = γx

3 = 0 and γy
1 = −γx

2 = α; the asymptotic values
in the strong field limit are Γ y

1 = −Γ y
0 = α/2, Γ x

2 = −α, and
Γ x

3 = 0. Notice that Γ x
2 reaches the asymptotic value for high

magnetic field only very slowly.
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Fig. 6. Anisotropy in the magneto-conductance for s-wave
impurity scattering, 1/(εFτ ) = 0.2 and various spin-orbit en-
ergies. For comparison we included the results of the relax-
ation time approximation (αpF = 0.4εF; full line). For not
too strong fields, the vertex corrections change the sign of
the effect.

4.2 The conductivity

Having discussed the vertex corrections we can now con-
sider their effect on the conductivity. We do not find a
strong magnetoresistance, compare also Figure 8 below.
Typical numerical results for the anisotropy in the con-
ductivity are shown in Figure 6. The most striking fea-
tures are the change of sign at low magnetic fields and the
sharp structure around ωs = εF.

In Figure 7 it is seen that the structure around ωs ≈ εF
becomes more pronounced the less disordered the system
becomes. For 1/εFτ � 1 a step in the anisotropy evolves
at that energy. The step is related to the van-Hove sin-
gularity in the density of states at the band edge of the
upper band. Disorder smears out this singularity. In or-
der to have an understanding of these effects we will cal-
culate the conductivity analytically for strong magnetic
fields. The limit ωs → ∞ is understood easily. There
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Fig. 7. Anisotropy in the magneto-conductance for αpF =
0.4 and varying the disorder. The curve in the limit of weak
disorder was obtained within the approximation described in
the section on small angle scattering.

is just one band occupied with the dispersion given by
E−(p) = p2/2m − ωs + αpy. The Fermi surface is a cir-
cle which is centered around (0,−mα). Shifting py to
p′y = py + mα the problem becomes rotational symmet-
ric. The (bare) current operator in the lower band is then
simply of the standard form jx,y = p′x,y/m. As a con-
sequence the p-independent disorder potential does not
renormalize the current operator, and the conductivity is
σxx = σyy = σ0. In particular there is no anisotropy in
the conductance.

Lowering the magnetic field various contributions to
the anisotropy appear. Expanding the square roots in the
energy dispersion, the Green functions for the two sub-
bands read

GR
±(ω,p)=

(
ω+µ∓ ωs−

p2
x

2m±
−

p2
y

2m
± αpy+i

1
2τ±

)−1

(51)

where

m± = m

(
1± mα2

ωs

)−1

(52)

1
τ±

=
1
τ0

∓ 1
τ1

(
1 − 1

2
α2p2

x

ω2
s

)
· (53)

We discussed the effective mass anisotropy already in the
framework of the relaxation time approximation. Allowing
the scattering times in the two bands to be different, the
result of Section 2 is generalized to(

σxx − σyy

σ0

)
mass

= −1
2

(αpF)2

ωsεF

τ−n− − τ+n+

τ−n− + τ+n+
· (54)

Further contributions to ∆σ are due to the anisotropic
relaxation rate. The scattering times τ0 and τ1 must be
obtained by solving the self-consistent Born approxima-
tion. In the weak disorder limit the van-Hove singularity
at the band edge of the upper band leads to a singular

(=step) behavior of the two scattering rates. Such singular
behavior is smeared out when disorder becomes stronger
(compare Fig. 4). For simplicity we restrict the following
discussion to the weak disorder case. The angular depen-
dent rate which we obtained by expanding the square root
in the energy dispersion may also be obtained by consider-
ing the scattering probability in the eigenstate basis. The
latter can be written as

W eff
pp′ = |U |2 1

2

(
1 + ep · ep′ 1 − ep · ep′

1 − ep · ep′ 1 + ep · ep′

)
. (55)

The vector ep has been defined below equation (15). In
the high field limit

W eff
pp′ = |U |2

(
1 0
0 1

)
− |U |2 1

4
α2(px − p′x)2

ω2
s

(
1 −1

−1 1

)
,

(56)

i.e. the effective scattering probability is anisotropic. The
anisotropy in the scattering rate is due to the term
proportional to (αpx)2/ω2

s and is found as δ(1/τ±) =
∓2π|U |2(αpx/2ωs)2(N+ − N−). For ωs < εF the two
density of states are practically identical, so 1/τ± re-
mains isotropic. Only for ωs > εF the scattering rate is
anisotropic and is a source for the anisotropy in the con-
ductivity, which we determine as(

σxx − σyy

σ0

)
τ−

=
1
4

(αpF)2

ω2
s

· (57)

We now consider the vertex corrections. To leading order
in 1/ωs we need to calculate only the diagram with one
impurity line. It is of the type

δσii =
e2

2π

∑
p,p′

ji(p)GR
pGA

pW eff
pp′GR

p′GA
p′ji(p′), (58)

which one has to sum over the two bands. Because the
scattering probability depends in the strong magnetic field
limit only on the x component of the momentum, only σxx

is affected. We find by evaluating equation (58)(
σxx − σyy

σ0

)
vertex

=
1
2

(αpF)2

ω2
s

(
n+ − n−

n

)2

· (59)

When ωs < εF the vertex correction cancels with the con-
tribution due to the mass anisotropy since (n+−n−)/n ≈
ωs/εF, so that the anisotropy vanishes. In the case ωs > εF
the sum of the three terms we discussed gives

∆σ/σ0 = −1
2

(αpF)2

ωsεF
+

3
4

(αpF)2

ω2
s

(60)

in full agreement with the numerical results of Figure 6.
We conclude this section by noting that the order of

magnitude of the anisotropy in the microscopic calcula-
tion is the same as in the relaxation-time approximation.
Here however also the transport time becomes anisotropic.
The competition with the mass anisotropy kills ∆σ when
ωs < εF. In the next section we will see that this cancella-
tion is a peculiar consequence of the momentum indepen-
dent impurity scattering.
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5 Small angle scattering

We will now drop the assumption of a p-independent im-
purity potential and consider the more general case. For
simplicity we will restrict ourselves to the weak disor-
der limit, where we will neglect the disorder broadening
of the energy levels, and terms which are related to the
off-diagonal matrix elements of the current operator (in
the eigenstate basis). The results obtained within these
approximations are fully equivalent with the Boltzmann
equation approach, as it is discussed in Appendix B. In
the energy state eigenbasis the dressing equation for the
current vertex then reads

Jx,y
pm = jx,y

pm +
∑
p′m′

W eff
pm;p′m′GR

p′m′GA
p′m′J

x,y
p′m′ , (61)

with

GR
pmGA

pm ≈ 2πτpmδ(µ − Em(p)). (62)

The lifetime is determined from the expression

1/τpm = 2π
∑
p′m′

W eff
pm;p′m′δ(µ − Em′(p′)). (63)

We determine the dressed current operator with an expan-
sion in eigenfunctions, following reference [32]: let φl

pm be
the full set of eigenfunctions of the operator∑

p′m′

W eff
pm;p′m′GR

p′m′GA
p′m′φl

p′m′ = λlφl
pm, (64)

which are normalized according to∑
pm

φl
pmGR

pmGA
pmφl′

pm = δll′ . (65)

The kernel entering the integral equation (61) may be ex-
panded as

W eff
pm;p′m′ =

∑
l

λlφ
l
pmφl

p′m′ . (66)

One further notices that 1/τpm is an eigenfunction with
eigenvalue one, λ0 = 1 and φ0

pm ∝ 1/τpm. Furthermore
the bare current operator is perpendicular to this eigen-
function. This can be shown in analogy with the discussion
developed in the case of s-wave scattering in Section 4.1.
With the expansion

jx,y
pm =

∑
l

jx,y
l φl

pm; jx,y
l =

∑
pm

jx,y
pmGR

pmGA
pmφl

pm. (67)

the dressed current operator can be expressed as

Jx,y
pm =

∑
l�=0

φl
pm

1
1 − λl

jx,y
l , (68)

from which we finally obtain the conductivity by insert-
ing it in equation (20). Before showing the results for

the anisotropy and analyzing the vertex corrections in the
presence of small angle scattering, it is instructive to con-
sider the zero magnetic field case first. As discussed in
Section 4 for the case of s-wave scattering, the vertex cor-
rections have their most dramatic effect on the anisotropy
in the limit of weak magnetic field. In the zero magnetic
field limit, the structure of the dressed current vertex sim-
plifies considerably. The scattering probability Wpp′ and
the effective scattering probability become isotropic, i.e.
they depend only on the angle between p and p′. One can
then expand

W eff = W 0 + 2W 1 cos(θ − θ′) + · · · , (69)

where W eff , W 0, and W 1 have still the two by two matrix
structure. The lifetimes and the dressed current operator
are expressed as

1/τ+ = 2πN+W 0
++ + 2πN−W 0

+− (70)

1/τ− = 2πN+W 0
−+ + 2πN−W 0

−+ (71)

and(
Jx,y

+

Jx,y
−

)
=

(
jx,y
+

jx,y
−

)

+
(

2πN+τ+W 1
++ 2πN−τ−W 1

+−
2πN+τ+W 1

−+ 2πN−τ−W 1
−−

)(
Jx,y

+
Jx,y
−

)
(72)

where N±(ε) = N0(1 ∓ mα/
√

(mα)2 + 2mε) and j± =
∇pE±(p) are the density of states and the bare current
vertices in the two bands. For short range impurity poten-
tial, from equation (55), one finds W 0

++ = · · · = 1/4πN0τ ,
τ± = τ , and W 1

++ = −W 1
+− = · · · = 1/8πN0τ . Going

through the algebra one may verify our earlier result that
the vertex corrections cancel the anomalous velocity op-
erator in this limit, J± = p±/m. Generally however this
is not the case. In the extreme forward scattering limit
in particular, one can neglect the off-diagonal terms W 1

+−
and arrives at the standard expression for single, isotropic
bands J± = j±τtr/τ with 1/τtr = N±

∫
dθW eff

±±(θ)[1 −
cos(θ)].

Let us now consider a Gaussian scattering probability,

Wpp′ = W exp(−r2
0(p − p′)2/2). (73)

The electron spin is assumed to be conserved, so this scat-
tering potential has still to be transformed to the energy
eigenstate basis in order to obtain W eff

pp′ , see equation (55).
The parameter r0 controls the decay of the scattering po-
tential. r0 = 0 corresponds to pure s-wave scattering, and
with r0pF � 1 we are in the strong forward scattering
limit. For simplicity the strength of the scattering poten-
tial and the screening parameter r0 are here assumed to be
independent of ωs. Of course, in order to explain the large
magnetoresistance such a dependence has to be taken into
account. Suggestions for a microscopic origin of the mag-
netoresistance have been given, e.g., in references [33–36].
At the end of this section we will also consider the charged
impurity scattering, which was discussed in the absence of
the spin-orbit coupling, e.g., in [34,35].
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Fig. 8. Magneto-conductance for αpF = 0.3 and two different
screening parameters r0. Within the approximations in this
section the conductivity is proportional to the inverse of the
scattering strength, W , which we assume here to be indepen-
dent of the magnetic field. For s-wave scattering (r0 = 0) the
anisotropy of the conductivity is not seen on the scale of the
plot. For r0pF = 1 we show the conductivities parallel and
perpendicular to the magnetic field.

Although our main concern here is the anisotropy in
the magnetoconductance, it may be useful to begin by
showing the numerical results for the magnetoconductance
itself (Fig. 8) for the model with a Gaussian scattering
probability.

Given a scattering strength W , the conductivity in-
creases with the parameter r0 and with the magnetic field.
Both effects are understood easily. The kinematics selects
scattering processes with q = |p− p′| ≈ 2pF, whereas the
scattering potential of equation (73) gives q < 1/r0. The
condition for effective scattering becomes r0pF � 1. In-
creasing r0 weakens the above condition and the conduc-
tivity gets enhanced. As a function of the magnetic field
the conductivity increases due to a similar reason. The
Fermi surface of the lower band grows and the effective
condition r0pF,− � 1 is no longer satisfied.

The numerically determined anisotropy in the magne-
toconductance is shown in Figure 9. Since now the conduc-
tivity itself is strongly magnetic field dependent we scale
∆σ with σxx + σyy instead of σ0.

One observes that the p-dependent scattering increases
the overall size of the anisotropy up to a factor ∼ 5 com-
pared to the s-wave case. The sign of the anisotropy also
changes. The peak anisotropy is still at magnetic fields
of the order of the Fermi energy, but there is a weak de-
pendence on the scattering potential. The anisotropy as a
function of spin-orbit energy is shown in Figure 10. The
overall amplitudes of the various curves are scaled in or-
der to make them more comparable. Also as a function
of spin-orbit energy the position of the peak changes only
weakly.

Finally let us consider charged impurity scattering.
This type of scattering may explain certain aspects of the
magnetoresistance [34]. For a charged impurity situated
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Fig. 9. Anisotropy in the magneto-conductance for αpF =
0.3εF and varying the screening parameter r0. The screening
parameters r0pF = 1, 2, 4 correspond to τtr/τ ∼ 2, 8, 30 when
they are determined for αpF = ωs = 0.
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Fig. 10. Anisotropy in the magneto-conductance for strong
forward scattering (r0pF = 4) for different strengths of spin-
orbit scattering. The curves for αpF/εF = 0.2, 0.1, 0.05 are
multiplied by 4, 8, 16.

in the plane the scattering potential is

U(q) = 2πe2/[qε(q)], (74)

where ε(q) is the dielectric function. We approximate it
here as

1
ε(q)

=
1

1 + (2πe2/q)χ(q)
(75)

where χ(q) is the two-dimensional Lindhard function It
has been argued in reference [34] that the screening wave
number qs = 4πe2N(εF) is for low electron density large
compared to the Fermi wavelength with the consequence
that

U(q) ≈ 1
χ(q)

· (76)

The scattering probability is approximated according to
W (q) ∝ |U(q)|2.
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Fig. 11. Resistivity versus in plane magnetic field for charged
impurity scattering.
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Fig. 12. Anisotropy in the magnetoconductivity versus in
plane magnetic field for charged impurity scattering. The
strength of the spin-orbit field is αpF = 0.2, 0.4εF.

In Figure 11 we show the resistivity obtained with
αpF = 0.2 and 0.4εF.

The resistivity increases by a factor of four from the
zero field limit to very strong magnetic fields. In the ab-
sence of spin-orbit coupling the resistivity saturates when
ωs > εF, where only one Fermi surface is left [34]. In the
presence of spin-orbit coupling there remains a weak in-
crease of the resistivity up to higher magnetic fields, since
the depopulation of one band is no more equivalent with
the full spin polarization.

The anisotropy in the magnetoresistance for charged
impurity scattering is shown in Figure 12.

Within the approximation adopted the scattering
probability depends only weakly on the momentum.
Therefore results for the anisotropy are in the intermediate
way between the s-wave and the strong forward scattering
limit.

6 Discussion

We have calculated the Drude conductivity for a two-
dimensional Fermi gas with spin-orbit coupling. In the
presence of an in-plane magnetic field the conductivity
parallel and perpendicular to the field are different.

Such an anisotropy has recently been observed in Si-
MOSFETs [23]. For the range of densities in the exper-
iment ns ≈ 0.7 − 1.3 × 1011/cm2, the Fermi energy is
εF ∼ 5.1 − 9.5 K. Taking α ≈ 6 × 10−6 Kcm which is re-
ported in reference [23], the dimensionless spin-orbit pa-
rameter is of the order αpF/εF ∼ 0.3−0.7. From our theory
one expects a relative anisotropy in the magnetoconduc-
tance of the order of several percent, in agreement to what
is seen experimentally. The maximum anisotropy appears
for magnetic fields of the order ωs ∼ εF, so the peak en-
ergy scales with the density, which again agrees with the
experiments. We found that the details of the effect de-
pend on the scattering potential. In the case of pure s-wave
scattering the maximum anisotropy appears precisely at
the magnetic field, where the upper band depopulates.
The conductivity is larger when it is measured parallel
to the magnetic field. On the other hand, at higher fields,
ωs > εF, the conductivity is larger when measured perpen-
dicular to the magnetic field. The sign of the anisotropy
at low fields is at odds with the experiment. Allowing a
finite range of the scattering potential, we have shown
that the anisotropy sign changes. In particular, in the case
of small-angle scattering both the sign and the peak po-
sition agree with what is found experimentally. For the
case of charged-impurity scattering we found – within the
random-phase-approximation – a rather complex pattern
of the anisotropy. There are two peaks with opposite sign,
one peak near ωs ∼ αpF and the other at ωs ∼ εF. These
results however should be taken with caution when com-
paring with experiments for the low density electron gas.

Comparison with experiments in heterostructures is
even more delicate due the intrinsic crystallographic
anisotropies. In both the experiments reported in [26,27]
the anisotropy was measured along two crystallographic
directions with different mobilities and most likely with
different operating scattering mechanisms. At low den-
sities (close and across the MIT) the anisotropy shows
∆σ < 0, while at high densities there is a change of sign
as function of the magnetic field: ∆σ < (>)0 for low (high)
fields. In our opinion, while a comparison with the sign of
the anisotropy contains the uncertainty related with the
knowledge of the scattering mechanism, the fact that the
maximum anisotropy at low and moderate fields scales
with the density appears as a robust feature in agreement
with our theory.

In summary we think that the physics described in this
paper may explain the anisotropic magnetoresistance ob-
served in reference [23] in Si-MOSFETs, and perhaps that
in heterostructures [26,27]. At more general level, our re-
sults give a further hint that the Drude-Boltzmann theory,
within an effective Fermi liquid picture, is a good start-
ing point for the description of the transport properties of
the metallic phase of the 2D electron gas, even near the
observed transition to an insulator.

We acknowledge fruitful discussions with C. Castellani and V.
Falko. This work was supported by the DFG through SFB 484
and by EU Research Training Network program (Project Nr:
RTN1 - 1999-00406).
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Appendix A: Ward identity

In this appendix we derive for the sake of completeness the
Ward identities for the system with spin-orbit coupling.
The generalized continuity equation is

∂tρ(x, t) + ∂iIi(x, t) = 0 (A1)

where i = x, y, z. The density and the current operators
are

ρ(x, t) = ψ†
α(x, t)ψα(x, t), (A2)

Ii(x, t) =
i

2m

[
(∂iψ

†
α(x, t))ψα(x, t)

− ψ†
α(x, t)(∂iψα(x, t))

]
− αεijknjψ

†
α(x, t)σk,αβψβ(x, t). (A3)

Define now the vertex functions

Λ0
αβ = 〈Ttρ

i(x, t)ψα(x′, t′)ψ†
β(x′′, t′′)〉

Λi
αβ = 〈TtIi(x, t)ψα(x′, t′)ψ†

β(x′′, t′′)〉, (A4)

for which the Ward identities read

∂tΛ
0
αβ + ∂iΛ

i
αβ = δ(t − t′′)δ(x − x′′)iGαβ(x′t′;x, t)

− δ(t − t′)δ(x − x′)iGαβ(xt;x′′t′′). (A5)

After Fourier transform one gets

ωΛ0
αβ − qiΛ

i
αβ = Gαβ(p+, ε+) − Gαβ(p−, ε−). (A6)

In the static limit ω = 0 and letting q → 0 one gets

Λi
αβ = −Gασ(p, ε)J i

σσ′(p, 0)Gσ′β(p, ε) = − ∂

∂pi
Gαβ(p, ε).

(A7)

The above equation is sufficient to see the cancellation
of the diamagnetic term in the conductivity, see equa-
tion (19).

i
∑
p

∫ ∞

−∞

dε

2π
Tr

[
ji(p)G(p)Jj(p)G(p)

]
− N

m
δij

= i
∑
p

∫ ∞

−∞

dε

2π
Tr

[
ji(p)

∂

∂pi
G(p)

]
− N

m
δij

= −i
∑
p

∫ ∞

−∞

dε

2π
Tr

[
∂

∂pi
ji(p)G(p)

]
− N

m
δij

= −i
1
m

δij

∑
p

∫ ∞

−∞

dε

2π
Tr [G(p)] − N

m
δij = 0. (A8)

In the dynamic limit on the other hand q = 0, ω → 0,
equation (A6) becomes

ωΛ0
αβ = GR

αβ − GA
αβ , (A9)

which can only be solved if the density vertex Λ0 is singu-
lar in the zero frequency limit. To see how this translates

for the irreducible vertex Γ , write Λ0
αβ = GασΓσσ′Gσ′β

and perform the p-summation on both sides of equa-
tion (A9). After decomposing in the Pauli matrices com-
ponents, one gets

ω

((
Γ0

Γ1

)
−

(
γ0

γ1

))
= i

(
1/τ0

1/τ1

)
(A10)

where we have used equations (39). From equation (A10)
one sees that both Γ0 and Γ1 have to be singular in the
zero frequency limit.

Appendix B: Boltzmann equation

We now briefly demonstrate the equivalence of the ap-
proach in Section 5 with the Boltzmann equation. Since
we have in mind to solve the Boltzmann equation in the
presence of a DC electric field, the distribution function
gpα is chosen to depend only on the wave vector p. The
Boltzmann equation including elastic scattering is then
written in the form

−eE · ∇gpα = −
∑
p′β

Qpα,p′β (gpα − gp′β) . (A11)

The Greek indices α and β label the two spin subbands.
The scattering kernel, in the case of elastic scattering, is
related to the scattering probability by

Qpα,p′β = 2πδ (Epα − Ep′β)W eff
pα,p′β (A12)

A solution of the linearized Boltzmann equation is looked
for in the form

gpα = f(Epα) +
∂f

∂E
eE · upα, (A13)

where the vector function upα obeys the integral equation

vpα =
∑
p′,β

Qpα,p′β (upα − up′β) . (A14)

Finally, the electrical current density is given by

j = −e
∑
p,α

vpαgpα, (A15)

which becomes

j = e2
∑
pα

(
− ∂f

∂E

)
vpα(upα · E). (A16)

To make contact with the diagrammatic approach we
write

upα = Jpατpα. (A17)

with

τ−1
pα =

∑
p′β

Qpα,p′β. (A18)
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The vector function Jpα is the renormalized current ver-
tex, which arises in the diagrammatic approach. This is
easily seen in the T = 0 limit, by observing that

− ∂f

∂E
→ δ(µ − Epα) ≈ 1

2π

1
τpα

GR
pαGA

pα. (A19)

Upon using upα = Jpατpα and equation (A19), the
integral equation (A14) becomes

Jpα = vpα +
∑
p′,β

W eff
pα,p′βGR

pαGA
pαJp′β (A20)

Hence the linearized Boltzmann equation is equivalent to
the approach in Section 5, where we neglect lifetime broad-
ening.
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